Mat. Res. Bull. Vol. 6, pp. 433-440, 1971. Pergamon Press, Inc. Printed in the United States.

HIGH PRESSURE SYNTHESIS AND CRYSTAL DATA OF THE RARE EARTH ORTHOALUMINATES
P. D. Dernier and R. G. Maines

Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey 07974
(Received March 25, 1971; Refereed)

Abstract

Single crystals of the rare earth orthoaluminates, REAlO_{3}, with RE = Dy - Lu, have been synthesized at high pressure in the presence of a flux. Lattice parameters for the orthorhombic members of the series, Sm-Lu, are reported. The a and c lattice parameters decrease smoothly in the direction Sm to Lu but the b parameter increases asymptotically to a maximum value at Lu. The anomalous behavior of the b parameter is similar to the variation of this parameter in the isostructural REFeO_{3} series between La and Gd . For these latter compounds the variation has been explained in terms of a gradual change in the coordination number of the rare earth cation. A similar mechanism appears to be the cause in the case of the rare earth orthoaluminates.

\section*{Introduction}

Unlike the ABO_{3} perovskite-like compounds where $A=$ rare earth and $B=F e, G a, V, C r, R h, S c$ and $I n$, the rare earth orthoaluminates are not isostructural across the entire series. From La through Nd the orthoaluminates have a trigonal distortion of the ideal perovskite structure whereas from Sm through Lu they have the orthorhombic distortion found in the rare earth orthoferrites. The series is also unusual in that the synthesis of the members $\operatorname{Dy}-\mathrm{TmAlO}_{3}$ at atmospheric pressure generally yields a mixture of phases, namely the rare earth orthoaluminate plus the rare earth aluminum garnet(1). More

recently Garton and Wanklyn have reported the synthesis of single crystals of $\operatorname{Dy}-\mathrm{YbAlO}_{3}$ using an equimolar mixture of oxides in PbO flux and a cooling rate from $1260^{\circ} \mathrm{C}$ of $50^{\circ} \mathrm{C} / \mathrm{hr}$ (2). However, the Tm and Yb runs contained mixtures of orthoaluminate and garnet, while LuAlO_{3} could not be synthesized under these conditions.

From recent structural refinements of NdAlO_{3} and SmAlO_{3}, it has been shown that the coordination number of Nd^{3+} is twelve, and very nearly twelve for $\mathrm{Sm}^{3+}(3)$. In contrast to this the coordination number of the rare earth ions in the (RE) FeO_{3} series is considerably less and varies from a maximum of approximately nine for LaFeO_{3} to a minimum of about eight for $\mathrm{LuFeO}_{3}(4,5)$. It appears that in general the coordination numbers of the rare earth ions in the (RE) AlO_{3} series are larger than their iron counterparts. As a consequence of this it has been suggested that high pressures would favor the synthesis of the smaller rare earth orthoaluminates, especially LuAlO_{3} (3).

This paper reports the synthesis of single crystals of REAlO_{3}, where $\mathrm{RE}=\mathrm{Dy}-\mathrm{Lu}$, via direct combination of equimolar mixtures of the oxides at high pressure in the presence of a flux. Also reported are the lattice parameters and X-ray powder patterns for the orthorhombic members of the series $\mathrm{Sm}-\mathrm{LuAlO}_{3}$.

Experimental

High pressures were generated in a piston-cylinder device. An 0.5 inch diameter tungsten carbide piston was forced by means of an oil-driven hydraulic ram into a supported tungsten carbide pressure vessel. The pressure-transmitting medium in our pressure vessel was a talc cylinder with a carbon resistance heater. This apparatus has been more thoroughly described elsewhere (6). Equimolar mixtures of aluminum and rare earth oxides were ball-milled in ethanol for approximately 12 hours, filtered, and dried. The resulting powders were then mixed with crushed NaOH pellets in a mole weight ratio of roughly $2: 1$. Previously it was found that NaOH does not react to any appreciable extent with the rare earth oxides, rare earth
gallium garnets and $\mathrm{Ga}_{2} \mathrm{O}_{3}(7)$, and for this reason was chosen as a flux for the orthoaluminates. Sample volumes of approximately 0.054 cc. each were packed into separate platinum containers. During all runs, two materials were pressed simultaneously at 32.5 kilobars and $1200^{\circ} \pm 10^{\circ} \mathrm{C}$, for a period of four hours. After quenching, the apparatus was allowed to cool over night, the pressure released, and the subsequent recovery of the sample containers effected. Each platinum cell was then broken open and immersed in distilled water. The NaOH rapidly dissolved leaving small, rectangular parallelpiped-shaped, transparent crystals. The crystals of the Ho, Er, and Tm compounds were colored pale yellow, pale pink, and pale green respectively, while those of Dy, Yb and Lu aluminate were colorless. All the crystals were strongly birefringent.

X-ray powder films were taken of $E u-\mathrm{LuAlO}_{3}$ crushed crystals with a Guinier camera using KCl as internal standard and CuKa radiation $\left(K_{\alpha}=1.5405 \AA\right.$ and $\left.K_{\alpha_{2}}=1.5443 \mathrm{~A}\right)$. None of the powder films showed any trace of garnet lines after 24 hrs . exposure. They were all indexed on the basis of the orthorhombic cell, space group Pbnm, with lattice constants given in Table 1.

TABLE 1

Orthorhombic Cell Data for the Series $\mathrm{SmAlO}_{3}-\mathrm{LuAlO}_{3}$. The standard deviations are less than 10^{-4}, except for those of EuAlO_{3} and GdAlO_{3} which are twice as large.

	$a,\left(\begin{array}{l} \mathrm{A} \end{array}\right)$	b, (${ }^{\circ}$)	c, (${ }^{\circ}$)	Vol. A
SmAlO_{3}	5.2912	5.2904	7.4740	209.22
EuAlO3	5.267	5.294	7.459	208.0
GdAl03	5.250	5.302	7.447	207.3
TbAlO 3	5.2317	5.3097	7.4196	206.11
DyAlO3	5.2053	5.3172	7.3950	204.68
HoAlO3	5.1811	5.3229	7.3741	203.37
ErAlO3	5.1595	5.3271	7.3539	202.12
TmAl03	5.1435	5.3277	7.3335	200.96
YbAlO 3	5.1251	5.3310	7.3146	199.85
LuAlO3	5.1012	5.3317	7.3000	198.55

The lattice parameters were refined from values of 2θ which were $\leq 2 \theta(224)$, excluding overlapped lines. The lattice parameters for SmAlO_{3} were determined by a simplified version
of Bond's method $(8,9)$. The powder patterns for $\mathrm{Eu}-\mathrm{LuAlO}_{3}$ are listed in Table 2.

Discussion

The lattice parameters of $\mathrm{SmAlO}_{3}-\mathrm{LuAlO}_{3}$ are plotted against atomic number in Fig. l. Atomic numbers rather than ionic radii were chosen as abscissae since the variation in coordination number across the series is not known. One can see that while the \underline{a} and \underline{c} parameters decrease in a nearly linear fashion from $S m-L u$, \underline{b} increases asymptotically to the Lu value. The behavior of the \underline{b} parameter resembles that of $\mathrm{REGaO}_{3}(10)$ compounds between Ce and Gd and the \underline{b} parameter of the REFeO_{3} series between La and Gd(11). However, in the case of the two latter series, the \underline{b} values eventually decrease for smaller rare earth ions, but no decrease occurs for the REAlO_{3} compounds.

The entire series of REFeO_{3} structures have been refined from single crystal data in order to fully understand the mechanism underlying this anomalous behavior(4). It is now clear that the oxygen polyhedron around the rare earth ion is distorted and this distortion varies drastically across the series. The rare earth ion has approximately an eight fold

Lattice parameters $\underline{a}, \underline{b}$, and \underline{c} versus atomic number for the rare earth orच̈hoaluminates.

TABLE 2
Guinier Diffraction Data for Some Rare Earth Orthoaluminates．

Eu		Gd		Tb		Dy		Ho	
${ }^{\text {d }}$ 。	${ }^{\text {d }}$	${ }^{\text {d }}$ 。	${ }_{\text {d }}$	${ }^{\text {d }}$ 。	d_{c}	${ }_{0}$	d_{c}	${ }^{\text {d }}$ 。	${ }_{\text {d }}$
3.735 m	$\begin{aligned} & 3.734 \\ & 3.731 \end{aligned}$	$\begin{aligned} & 3.731 \mathrm{~m} \\ & 3.726 \mathrm{w} \end{aligned}$	$\begin{aligned} & 3.731 \\ & 3.723 \end{aligned}$	$\begin{aligned} & 3.729 \mathrm{~m} \\ & 3.721 \mathrm{wm} \end{aligned}$	3.727 3.710	$\begin{aligned} & 3.722 \mathrm{~m} \\ & 3.699 \mathrm{~m} \end{aligned}$	3.720 3.698	$\begin{aligned} & 3.714 \mathrm{~s} \\ & 3.688 \mathrm{mb} \end{aligned}$	3.713 3.687
		3.337 w	3.335	3.330 w	3.330	3.325 wm	3.323	3.316 m	3.316
2.647 w	2.647	2.651 w	2.651	2.653 w	2.655	2.659 wm	2.659	2.662 wm	2.661
	2.639	2.635 s	2.635	2.628 s	2.629	2.622 vs	2.622	2.617 vs	2.616
2.639 в	2.634	2.626 w	2.625	2.616 w	2.616	2.603 wm	2.603	2.591 m	2.591
		2.499 vvw	2.497	2.500 vw	2.500	2.502 wm	2.502	2.503 wm	2.503
2.158 mm	2.159	2.159 w	2.159	2.159 w	2.159	2.158 m	2.159	2.159 m	2.158
2.151 wm	2.151	2.145 w	2.145	2.138 w	2.138	2.128 m	2.128	2.120 m	2.120
				2.060 vw	2.061	2.055 vw	2.055	2.050 w	2.050
		1.865 wm	1.865				1.860	1.992 vw 1.856 m	1.992 1.856
1.865 wm	1.865	1.865 wim	1.065	1.855 wm	1.855	1.849 m	1.849	1.843 m	1.844
1.815 w	1.812 1.811			1.808 w	1.810	1.805 wm	1.807	1.805 w	1.806
	1.869		1.668	1.665 vw	1.807	1.661 vw	1.804 1.661	1.800 wm	1.800 1.658
1.668 W	1.668	1.665 wm	1.666	1.661 vw	1.661	1.655 w	1.656	1.652 mm	1.651
				1.657 vw	1.657	1.649 vw	1.649	1.643 vw	1.643
		1.634 w	1.634	1.635 vw	1.635	1.636 wm	1.636	1.636 wm	1.637
		1.527 w	1.527	1.528 w	1.528	1.528 wm	1.528	1.527 wm	1.528
				1.520 w	1.521	1.518 mm	1.518	1.515 wm	1.515
1.522 w	1.522	1.518 wm	1.519	1.512 m	1.513 1.513	1.507 m	1.507 1.506	1.502 w 1.500 m	1.502 1.501
						1.387 w	1.387	1.386 wm	1.386
1.320 w	1.319			1.315 w	1.315	1.311 m	1.311	1.308 m	1.308
						1.178 m	1.176	1.220 w	1.221

Er	
${ }_{\text {d }}$ 。	d_{c}
3.709 m	3.706
3.679 m	3.677
3.310 mm	3.310
2.663 wm	2.664
2.611 s	2.610
2.579 wm	2.580
2.505 m	2.504
2.214 w	2.214
2.158 mm	2.157
2.113 wm	2.112
2.044 w	2.045
1.854 wm	1.853
1.839 wm	1.838
1.803 vw	1.804
1.797 m	1.797
1.654 wm	1.655
1.647 wm	1.647
1.637 m	1.637
1.527 wm	1.527
1.497 wm	1.497
1.495 m	1.495
1.478 w	1.478
1.384 m	1.385
1.310 w	1.310
1.305 m	1.305

Tm		Yo		L2	
${ }^{\text {d }}$ o	${ }^{\text {d }}$ c	${ }_{0}$	d_{c}	${ }^{\text {d }}$ 。	${ }^{1}{ }_{2}$
4.215 vw	4.211	4.203 vw	4.197	4.180 vw	4.181
3.700 ms	3.700	3.696 s	3.695	3.685 ms	3.536
3.667 m	3.667	3.655 ms	3.657	3.651 wm	3.650
3.303 m	3.304	3.298 m	3.298	3.291 m	3.290
2.663 m	2.664	2.665 m	2.666	2.665 wm	2．656
2.603 s	2.605	2.598 vs	2.599	2.593 vs	2.594
2.572 m	2.572	2.562 m	2.563	2.550 wm	2.551
2.503 m	2.504	2.503 m	2.504	c． 503 m	2.504
2.208 w	2.209	2.202 w	2.202	2.194 w	2.194
2.154 m	2.155	2.154 m	2.154	2.153 m	2.153
2.104 m	2.105	2.098 ms	2.099	2.091 m	2.091
2.039 wm	2.040	2.035 m	2.035	2.030 m	2.031
		1.986 vw	1.986		
1.850 m	1.850	1.848 m	1.847	1.843 m	1.843
1.833 wm	1.833	1.828 m	1.829	1.824 mm	1.825
1.802 wm	1.801	1.799 wm	1.799	1.797 mm	1.797
1.795 mm	1.794	1.791 m	1.791	1.787 m	1.787
1.652 w	1.652	1.649 w	1.649	1.645 wm	1.645
1.643 wm	1.643	1.639 mm	1.639	1.635 m	1.636
1.636 m	1.636	1.628 w	1.627	1.620 w	1.620
1.636 m	1.632	1.636 m	1.636	1.635 m	1.636
1.593 w	1.593	1.589 vw	1.588		
1.527 wm	1.526	1.526 wm	1.526	1.526 w	1.525
1.510 wm	1.510	1.508 mm	1.508	1.506 wm	1.506
1.493 w	1.493	1.489 w	1.489	1.485 wm	1.484
1.491 m	1.491	1.487 m	1.486	1.482 wm	1.481
1.476 wm	1.475	1.473 mm	1.472	1.470 w	1.469
1.384 m	1.384	1.383 wm	1.383	1.382 mm	1.382
		1.360 vw	1.360		
1.310 vw	1.310	1.312 w	1.311		
1.302 wn	1.302	1.300 wm	1.300	1.297 m	1.297
		1.215 wm	1.215		
1.169 wm	1.170	1.168 wm	1.167		
1.167 w	1.169				
1.160 wm	1.161	1.158 w	1.158		
1.149 w	1.149	1.148 w	1.147		
	1.104				
1.105 wm	1.104				
	1.104				

coordination between TbFeO_{3} and NdFeO_{3}. At the extremities of the series this approximation breaks down. For LuFeO_{3} the seventh and eighth nearest oxygen atoms are becoming second nearest neighbors, while for LaFeO_{3} the ninth nearest oxygen is too close to be considered a next nearest-neighbor. This change in coordination number governs the behavior of the \underline{b} parameter.

It seems likely that a similar mechanism applies in the case of the REAlO_{3} series. However, it is important to note that the orthorhombic series begins with SmAlO_{3} where the coordination number of Sm^{3+} is very nearly twelve, compared to eight for its iron counterpart. Also, the nonlinear variation of the \subseteq parameter and the significant change in slope of the b parameter between Sm and Tb in Fig. I suggest a rapid decrease in the coordination numbers of the rare earth ions. Between DyAlO_{3} and LuAlO_{3} the coordination number does not appear to decrease as drastically. However, without a detailed knowledge of the structure of at least several more REAlO_{3} members, it is difficult to ascertain how the rare earth polyhedron varies across the series.

Another interesting point is that starting with Ho one needs high pressures to synthesize single phase rare earth orthoaluminates. LuAlO_{3} was easily formed at 32 kbar but no attempt was made to find the minimum pressure necessary for this synthesis. We suspect that 32 kbar exceeds the minimum considerably. It is a logical step to attempt to synthesize under pressure MAlO_{3}, where M is of smaller ionic radius than Lu^{3+}. We believe In^{3+} and possibly Sc^{3+} are likely M -cations and expect to proceed with these experiments in the near future. Acknowledgements
The authors wish to thank J. P. Remeika for the $\mathrm{Sm}-\mathrm{TbAlO}_{3}$ crystals used in the lattice parameter determinations and M. Marezio for helpful discussions and continued interest in this work.

References

1. S. J. Schneider, R. S. Roth and J. L. Waring, J. Res. Natl. Bur. Std. A65, 345 (1961).
2. G. Garton and B. M. Wanklyn, J. Cryst. Growth 1, 164 (1967).
3. M. Marezio, P. D. Dernier and J. P. Remeika, to be published.
4. M. Marezio, J. P. Remeika and P. D. Dernier, Acta Cryst. B26, 2008 (1970).
5. M. Marezio and P. D. Dernier, Mat. Res. Bull. 6, 23 (1971).
6. G. C. Kennedy and R. Newton, Solids Under Pressure. McGraw-Hill, New York (1962).
7. M. Marezio, J. P. Remeika and P. D. Dernier, Mat. Res. Bull. 1, 247 (1966).
8. W. L. Bond, Acta Cryst. 13, 814 (1960).
9. R. L. Barnes, Mat. Res. Bull. 2, 273 (1967).
10. M. Marezio, J. P. Remeika and P. D. Dernier, Inorg. Chem. 7, 1337 (1968).
11. M. Eibschütz, Acta Cryst. 19, 337 (1965).
